Software Interrupt Control Mcdule Functional Spec. PE-T-10"

DATE September 22, 1983
TO: R and D Personnel
FROM: Jerry Kazin

«t

Software Interrup

Control Module Functional Scec.

5, Rev. 2

enabled/disabled by
19 new software

four new

REFERENCE PRIMOS Subroutines Guide (BREAK3$ Function)
i Software Intervupt Mechanisnm
i PE-TI-879
Software Interrupt Control Modu.e Proposal
PE-T-1004
Software Interrupt Control Module Design Spec.
PE-TI-1006
KEYWORDS: 3oftware Interrupts, QUIT
ABSTRACT
Prior to Rev. 18, PRIMOS contained only one software interrupt known
as the QUITS condition. Tnis conditicen may be
calling the BREAK$ module. At both Rev. 18 and Rev.
yinterrupts were added to the system. This paper discusses
ymodules, SWINT, SWMKRCS, SWSROOFF, SW$RAOF,

users to enable/disable these new interrupts. It also

and how to use the module.

This document is classified PRIME RESTRICTED.

It must not be distributed to non-Prime Personnel.

When there is no longer a need for this document,

it should be returned to the 3ldg. 10 Information

Center by special delivery inter-office mail - or
destroyed.

©Prime Computer, Inc.,
‘A1l Rights Reserved

1983

¥¥% PRIME RESTRICTED #**#

discusses

and SW$ON which allow

when

N

(@)

Software Interrupt Control Module Functional Spec.

Table of Contents

INTRODUCTION . v v v e v onsnnnn. e

WHY DO WE NEED SWSINT..iiit ittt ittt nnennnennnsas

MODULE DESCRIPTIONS . . vt iiiteiinrniennoennencnansos
3.7 SWSINT. e nnnns Peeeesanenenn et cereenn
SWEMKRCS e v v v v e v nnns Gttt c e e ecaaas e ettt e e
SWSROOFF...vvviiiiinnennnn Getesanvsnons i et sseesesrsacenesas .
SWSRAOF ..o v ittt iiiiennann ceeneus coeananan

SW$ONcoa-o-o--o--nnuu oooooo LR R R AR B R R B B) ..

TCO MAKE A CRITICAL SECTION....vveeeenosenses

=in O wwww
- = Ul £

O O < I Ceereenn coes
4.1.2 FORTRAN...... N ceeen
uo1-3 Pr4Aonco-c-o-onoo;-no ooooo 65 0600800 0 00

=
.
ny

In Ring 0'...lI.'I..0'...'....'.'...0.‘
4.2.1 Programming Example...ceeeeeeeens

0

[S2RG LIV e o)

.
.
.

PMA'I'Q.Q....0.0..."...0000..!. ------------

E
6.

MORE INFORMATION ON THE SOFTWARE INTERRUPT MECHANISM

¥%% PRIME RESTRICTED ¥**#

In Ring 3. et e s e e et et e e e e .o

W TO MAKE A REVERSE CRITICAL SECTION...:.veevswus

L 0 ceesetes e .
2 FORTRAN . ittt ittt ittt tinnennansss cressensane
3 .

A

1

NABLING/DISABLING SELECTED SOFTWARE INTERRTUPTS.......

PE-T-1005,

Rev.

» ¢ o
. ¢ 0 o 0 0 0 0 ¢ . e ..
. . . . e e o a
. ® o s @ s 8 e 0 0 0 0 LI A Y
..... B e
s e a9 0 00 058 s e o 0
uuuuu .0 ® e s 0 e 0 0
@ e 0 8 00 0 00 0 0 e e o 0
. e @« e 0 0 0 0 0 0 0 L)
® 0 0 0 0 00 ¢ 0 0o
o e o o LI} e e o s 0 0 0
e = 00 0 a0 0 0 0o
* 006 0 00 ..

Programming Example....ieeeessieeosrseeososroanensannns

Page

2

2

~

ﬂ‘~

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

1 _INTRODUCTION

This document provides a description of the functionality provided by
ithe Software Interrupt Control Module, SW$INT and 1its streamlined
ifriends SW$MKRCS, SW$ROOFF, SW$RAOF, and SW$ON. Up till now, a user
was able to turn off only one kind of software interrupt, QUIT. This
was done via the BREAK$ module. For more information on this module
consult PRIMOS Subroutines Guide (BREAK$ Function).

At Rev. 19.0 six software interrupt types hnave been defined for
PRIMOS. They are the following:

1) CPU watchdog timer (CPU_TIMER$ condition),
2) Real Time watchdog timer (ALARM$ condition),
3) Phantom Logout Notification (PH_LOGO$),

4) Cross Procesé Signalling (CPS$),

5) Logout (LOGOUT$), and

6) Terminal QUIT (QUITS).

CPS$ is an internal condition and will never be released to the general
public.

1At Rev. 19.3 a seventh interrupt type has been added.

: 1) IPC Message Waiting (IPC_MSG_WAITINGS$)

SW$INT and 1its associated mechanism allow a user to independently and
iselectively enable/disable any or all of these interrupts. SW$MKRCS,

| SWSROOFF, SW$RAOF, and SW$ON allow a wuser to enable/disable all of
ithese interrupts at one time.

2 WHY DO WE NEED SW$INT

iThe software interrupt mechanism normally enables the receipt of
iinterrupts in ring 3 and normally disables their receipt in ring 0. 1In
1light of this fact, there are three main reasons why SW$INT has been
created.

1) It often happens that programmers need to create sections of code
that are non-interruptable. These sections of code are known as
critical sections. When a software interrupt 1is signalled, an
asynchronous event occurs. If these asynchronous events were
allowed to occur, a programmer would not be able to create a
critical section. 3Since SW$INT and SW$RAOF allow programmer's to
disable all software interrupts, the use of these modules gives the
programmer the needed ability to create a critical section. As ring
0 is normally software interrupt inhibited, this point only relates
to the ring 3 programmer.

¥¥% PRIME RESTRICTED *#*% Page 3

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

2) Sometimes it 1is necessary only to turn off a specific software
interrupt, not all interrupts. For example, a program may need to
impede terminal quits, but yet allow its user to see phantom logout
notification. (It may be spawning phantoms on behalf of its user.)
If only all interrupts could be turned off, it would not be possible
to achieve this state. SW$INT allows a programmer to selectively
enable/disable the various interrupt types.

3) There are pieces of code in ring 0 that need to receive software
interrupts. Since ring O 1is normally disabled for software
interrupts, it must be possible to enable software interrupts.
SWSINT and SW$MKRCS allow software interrupts to be taken while in
ring 0. The section of ring 0 code that is allowed to take these
interrupts is called a reverse critical section.

3 MODULE DESCRIPTIONS

'The following module descriptions contain references to the variables
!selection and value. These variables have a three word data structure
ias follows:

| del 1 bit_struec,

l 2 len fixed bin, /* number of bits available ¥/
l 2 first16 bit(16), /¥ first set of 16 bits */

I 2 second16 bit(16); /* second set of 16 bits ¥/

!Presently seven interrupts types have been defined. Their positions wit
thin
iselection and value are:

} terminal quit - bit 1
| cpu timer - bit 2
i real time timer - bit 3
| logout - bit 4
: phantom logout notification - bit 5
| cross process signalling - bit 6
' ipc message waiting - bit 7

%% PRIME RESTRICTED *¥*¥ Page Yy

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3.1 SWSINT

Software Interrupt Control Module
i SW$INT | i SWSINT |
Subroutine May 25, 1982

Name: SWS$INT

Purpose:

SWSINT is used to control the enable/disable status of the software
interrupts. It does this by setting/resetting the enable bit(s) of the
software interrupt ring controcl words located in PUDCOM.

SWSINT is able to set on, set off, or simply read the status of the
interrupt type <chosen by its caller. The type is chosen by either
setting a bit(s) on in the input argument, SELECTION, or using one of
the "all" Kkeys. For read, the current setting is returned in the
argument, VALUE.

A user may enable/disable and/or read any interrupt(s) in an outer ring
by including the optional outer ring argument.

During enabling if an interrupt is found pending which is enabled, it
will be handled immediately.

Software interrupts are normally off in ring 0 and normally on in the
outer rings.

The module is much more powerful in ring 0. It can additionally return
the already defered interrupt setting. Additionally, to ease use in
ring0 this module has two names, SW$INT and SW$IN. In PL/P one can be
used as the function call and one as the procedure call.

When SW$INT is called to inhibit or enable interrupts with any of the
"all" keys (see below for key definitions), the terminal quit counters
will not Dbe incremented/decremented if they already indicate the
desired setting. In other words, if SW$INT is called to inhibit all
interrupts and the quit counter is already positive meaning terminal
quits are already inhibited, the counter will not be incremented. This
is analogous for the enable case.

Usage:

From Any Ring: dcl sw$int entry(fixed bin, 1, 2 fixed bin,
2 bit(16), 2 bit(16),
1, 2 fixed bin, 2 bit(16),
2 bit(16), fixed bin [,
fixed bin]);
call sw$int(key, selection, value, ercode [,
outer ringl);

¥%% PRIME RESTRICTED *%% Page 5

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

Additionally
From Ring 0: dcl sw$int entry(fixed bin, 1, 2 fixed bin,
2 bit(16), 2 bit(16),
1, 2 fixed bin, 2 bit(16),
2 bit(16), fixed bin [,
fixed binl)
returns(fixed bin);

swi_already_deferred = swsint(key, selection,
value, ercode [,
outer ringl);

Key - input key
valid keys and their values are:

k$read = 1 Read present status
k$on = 2 Turn on interrupt(s)
k$off = 3 Turn off interrupt(s)
k$rdon = 4 Read present status and
turn on interrupt(s)
k$rdof = 5 Read present status and
turn off interrupt(s)
k$rdal = 6 Read present status of all “N
interrupts '
kK$alon = 7 Turn on all interrupts
k$alof = 8 Turn off all interrupts
k$raon = 9 Read present status and
turn on all interrupts
k$raof = 10 Read present status and

turn off all interrupts
selection - specific interrupt type chosen

value - when a read is issued and the interrupt type chosen in
selection or by use of an "all" key is found enabled the bit
as defined in selection above is turned on
whenever a read is to be performed the len field of value must
be initialized to a number >z 7 (number of interrupt types) so
SW$INT knows that the user has presented a buffer large enough
for it to write into

ercode - standard PRIMOS error code
only ones used are:

bad key - unknown key
bad parameter - bad length field in selection
bad optional outer ring
buffer too small - bad length field in value
outer ring - optional input argument that tells SW$INT to act upon the “\
- ring specified in outer_ring

¥%% PRIME RESTRICTED *** Page 6

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

<

swi_already_deferred - 1f = 1 then a software interrupt has already
been deferred in ring 0

¥%% PRIME RESTRICTED ¥#% Page 7

Software Interrupt Control Module Functional Spec.

3.2 SWSMKRCS

- . - - - - - .=

w2
=
R7:3
=
=~
=
Q
wn

' Purpose:

'Ailows software
1
10.

iDuring enabling
!will be handled

Make A Reverse Critical Section

PE-T-

TUE,

1005, Rev. 2

- — —— - ——

13 SEP 1983

interrupts to be seen in ring 0. Callable only in ring

if an interrupt is found pending which is enabled, it

immediately.

' del sw$mkres entry(1, 2 fixed bin, 2 bit(16),
|

returns(fixed bin);

i swi_already deferred £ sw$mkres(value);

at time of call

lvalue - returned indication of inhibited interrupts
[}
]

2 bit(16))

iswi already_deferred - if = 1 then a software interrupt has already

been deferred in ring 0O

**%% PRIME RESTRICTED ¥##

Page 8

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

13.3 SWSROOFF

| Turns Software Interrupts Off

.1 SW$ROOFF | i SW$ROCFF |

i Subroutine TUE, 13 SEP 1983

i Name: SW$ROOFF

i Purpose:

iTurns selected software interrupts off. Only callable in ring 0.
iUsage:

' dcl sw$rQoff entry(1, 2 fixed bin, 2 bit(16), 2 bit(16));

! call sw$rOoff(selection);

iselection - specific interrupt type chosen

%% PRIME RESTRICTED *#*3¥ Page 9

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2
'3.4 SW$RAOF

i Makes A Critical Section

11 SW$RAOF | ! SW$RAOF |
mmmmmmmmem S
! Subroutine TUE, 13 SEP 1983

'Name: SW$RAQF

| Purpose:

' Turns off all software interrupts. Should only be called from ring 3
'as it only turns off interrupts for ring 3.

iUsage:

, del swsraof entry(1, 2 fized bin, 2 bit(16), 2 bit (16));

| call sw$raof(value);

value - returned indication of enabled interrupts
at time of call

%#%% PRIME RESTRICTED *¥*¥ Page 10

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3. SUSRAOF

X Makes A Critical Section
ySudroutine TUE, 13 SEP 1983

i Name: SWSRAQF

i Purpose:

Turns off all software interrupts. Should only be called from ring 3
as it only turns off interrupts for ring 3.

i
{
iUsage:

| dcl sw$raof entry(1, 2 fixed bin, 2 bit{16), 2 bit(16));

' call sw$raof(value);

ivalue - returned indication of enabled interrupts
: at time of call

r

¥%%* PRIME RESTRICTED #*%*# Page 10

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2
13.5 SW3ON

| Turns Software Interrvupts On

Dmmmmmmmmm =
Pl SW$ON | | SW$ON |
D emmmmmmme S
| Subroutine TUE, 13 SEP 1933

i Name: SW$ON

| Purpose:

'Enables the selected software interrupts. Should only be called from

'ring 3 as it only turns on interrupts for ring 3.

'During enabling if an interrupt is found pending which is enabled,

'will be handled immediately.
iUsage:

| dcl sw$on entry(i, 2 fixed bin, 2 bit(16), 2 bit(16));

: call sw$on(selection);

!selection - specific interrupt type chosen

*%#% PRIME RESTRICTED *%¥**¥ Page

it

11

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

4 HOW TC MAKE A CRITICAL SECTION

Critical sections allow & programmer to write non-interruptable code.
iSince interrupts are normally enabled in ring 3 and disabled in ring 0,
ionly ring 2 users normally have to worry about creating critical
isections. Unfortunately, on rare occasions it may be necessary to
iinsure that ring 0 is in a 2ritical section. This may occur because a
iprior module in ring O has enabled any or all of the software
iinterrupts.

iThis section is therefore split into two parts, making a critical
isection in ringl3 and making a critical section in ring 0.

4.1 In Ring 3

iGenerically a critical section in ring 3 can be made by:
1) Finding out what interrupts are presently enabled.

2) Turning off the found interrupts.

The critical section is ended by:

1) Turning back on the found interrupts.
Note that this method of creating a critical section leaves the state
of a program's execution environment the same after the critical
section as before the critical section.

iThese three operations can be achieved in two atomic steps:

i 1) Finding out which interrupts are presently on while turning them
i off.

| 2) Turning back on the found interrupts.

iThe following is sections describe how to make a critical section in
PL/P, FORTRAN, and PMA.

‘4.1.1 PL/P

idel sw$raof entry(1, 2 fixed bin, 2 bit(16), 2 bit(16));

I 1, 2 fixed bin, 2 bit(16), 2 bit(16), fixed bin),
| 1 value,

i 2 len fixed bin,

| 2 first16 bit(16),

| 2 second16 bit(16);

/% %¥%%% BEGIN CRITICAL SECTION **%%x% %/

¥%% PRIME RESTRICTED #**¥ Page 12

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

icall sw$raof(value);
1 {User Codel}

lcall sw$on(value);

/% %%%%% END CRITICAL SECTION ¥*¥x¥ X/

(4.1.2 FORTRAN

i INTEGER*2 VALUE(3)

/% %%%%% PBEGIN CRITICAL SECTION **#¥¥ %/

(9]

H CALL SW$RAOF(VALUE)
| {User Codel}

f CALL SW$ON(VALUE)

i C /% %%x%% END CRITICAL SECTION ¥¥¥¥%%x ¥/

‘4.1.3 PMA

i DYNM VALUE(3)

L ¥ /% %%%%% BEGIN CRITICAL SECTION ¥¥*¥¥% ¥/
| CALL SW$RAOF

| AP VALUE,SL

! {User Code}

CALL SW$ON
AP VALUE, SL

i /% %%%%% END CRITICAL SECTION *¥¥¥¥ ¥/

%¥%% PRIME RESTRICTED *¥** Page 13

N

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev.

‘4.2 In Ring O

iGenerically a critical section in ring 0 can be made by:

| 1) Get and save the present value for all counted software
| interrupts

i 2) Set thes value for all counted interrupts to 0

i 3) Call SWS$INT with the read all off Key toc get present enabled
| state which must be saved

1To end the crtical section, do the following:

i 1) Call SWSINT with the on key and the saved present enable state

| 2) Restore the saved value for all counted software interrupts

1Hote that this method of creating a critical section leaves the state
iof a program's execution environment the same after the critical
isection as before the critical section.

iThe following section contains a programming example in PL/P of how to

imake a critical section in ring 0.

14.2.1 Programming Example

idel break$ entry (bit(16), fixed bin),

| sw$int entry(fixed bin, 1, 2 fixed bin, 2 bit(16),
| 2 bit(16), 1, 2 fixed bin, 2 bit(16),
i 2 bit(16), fixed bin),

| brk count fixed bin,

: 1 selection,

i 2 len fixed bin,

| 2 first16 bit(16),

| 2 second16,

| 3 nu bit(16);

idel 1 value like selection,

| ercode fixed bin;

brk set by '0004'bl,
k$raof by 10,
k$off by 3,

| /¥ *%%%% BEGIN CRITICAL SECTION *¥%%% %/

icall break$(brk get, brk count);

icall break$(brk set, 0):

ivalue.len = 32;°

icall sw$int(k$raof, selection, value, ercode);

¥%% PRIME RESTRICTED *¥# Page 4

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

| {User Code}
lcall sw$int(k$off, selection, value, ercode);
lcall break$(brk set, brk_count);

\/#% *%%%% END CRITICAL SECTION #¥¥¥x ¥/

'5 HOW TO MAKE A REVERSE CRITICAL SECTION

Software interrupts are normally disabpled in ring 0 to make Kkernal
operations normally atomic. This allows ring 0 programmers to forget
about the need for critical sections, a very useful convienence.
However, sometimes ring 0 code, such as C1IN$, needs to enable software
linterrupts. As was previously mentioned, these sections of code are
'termed reverse critical sections.

Generically a reverse critical section can be made by:

1) Finding out what interrupts are presently disabled.

2) Turning on the found interrupts.

The reverse critical section is ended Dy:

1) Turning back off the found interrupts.

Note that this method of creating a critical section leaves the state
of a program's execution environment the same after the reverse
critical section as before the reverse critical section.

!These three operations can be achieved in two atomic steps:

! 1) Finding out which interrupts are presently off while turning themn
| on.

: 2) Turning back off the found interrupts.

One other item needs to. be considered in ring O when creating a reverse
critical section. Since interrupts are normally off in ring O, there
exists the ©possibility that a software interrupt occured while we were
in ring 0 with interrupts disabled. When the system detects such a
situation and finds the interrupts to be enabled in the outer rings, it
defers the interrupt until the first exit from ring 0. Only one
interrupt type may ever be found defered. Therefore, when creating a
reverse critical section, the programmer must read the
'!SWI ALREADY DEFERRED status returned. If there already is a deferred
interrupt, the program should return as soon as possible. The return
from ring 0 will then catch the deferred interrupt. Since the
programmer was trying to set up to see interrupts, this is the

#%% PRIME RESTRICTED *¥%¥ Page 15

» -
-

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

functionality that the programmer desires.

Two other rules must also be followed by the ring 0 wuser. When a
ydeferred interrupt is detected, the initial call into ring 0 is set up
ito be retryed. Therefore, any“ime a programmer is going to create a
ireverse critical section, no static changes can be made to the user
1environment at any point before the reverse critical section 1is made.,

Basically, the above two paragrapns show that the only time a
programmer needs to pay attention to tne SWI ALREADY DEFERRED status is
when the program is in ring 0 and software interrupts are to be
enabled.

For more information consult Software Interrupt Mechanism PE-TI-879.
The following 1is sections describe how to make a reverse critical
section in PL/P, FORTRAN, and PMA,.

5.1 PL/P

idel sw$mkres entry(1, 2 fixed bin, 2 bit(16), 2 bit(16))

' returns(fixed bin),

i 1 value,

| 2 len fixed bin,

i 2 first16 bit(16),

! 2 second16 bit(16);

/% ¥%%%% BEGIN REVERSE CRITICAL SECTION *%%%% %/

i1f swdmkres(value) = 1
i then return;

| {User Code}

icall swsrOoff(value);

(/% ¥%%%% END REVERSE CRITICAL SECTION #*%x%% %/

i5.2 FORTRAN

| INTEGER*2 VALUE(3)
1 C /* *#%%%*% BEGIN REVERSE CRITICAL SECTION %%%%% %/
! IF (SW$MKRCS(VALUE) .EQ. 1) RETURN

i {User Code}

¥%% PRIME RESTRICTED *## Page 16

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

i CALL SW$ROOFF(VALUE)

i C /% %%%%% END REVERSE CRITICAL SECTION *¥¥¥% ¥/
15.3 PMA

l DYNM VALUE(3)
L * /% %%%%% BEGIN REVERSE CRITICAL SECTION #*%¥% ¥/
CALL SW$MKRCS

| AP VALUE,SL

i S1A INTERRUPT
|

(

!

SNZ PENDING?
PRTN YES - RETURN

l {User Codel

CALL SW$ROOFF
AP VALUE,SL

i /% %%%%% END REVERSE CRITICAL SECTION ¥*¥#¥ ¥/

'6 ENABLING/DISABLING SELECTED SOFTWARE INTERRTUPTS

'SW$INT can be used to selectively enable or disable specific
'interrupts. As ring 3 is most likely to use this feature, an program
'which runs in this ring will be used as an example.

'Only PL/P will be used as the programming example.

!6.1 Programming Example

'A program running in ring 3, such as EMACS, decides that it does not
'want the phantom logout notification message to be printed immediately.
'The following code show how EMACS would disable this interrupt.

tdel sw$int entry(fixed bin, 1, 2 fixed bin, 2 bit(16), 2 bit(16),

| 1, 2 fixed bin, 2 bit(16), 2 bit(16), fixed bin),
1 key fixed bin,

! 1 selection, /* selected interrupt */

i 2 len fixed bin,

! 2 first16 bit(16),

: 2 second16 bit(16);

'del 1 dummy like selection, /* dummy value arg */

| ercode fixed bin; /% standard system error code ¥/
|%replace ph_logo_bit by 0800,

#%% PRIME RESTRICTED **# Page 17

[4
. &

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

k$on by 2,
k$off by 3, ']
max num swis by 7; /* max number software ints. ¥/

EMACS Code During Which It
Is Alright To See Phantom
Logout Notifications

i/* turn off phantom logout notification ¥/

iSelection.len = max_num_swis;
1selection.first16 = ph_logo_bit;
icall sw$int(k$off, selection, dummy, ercode) ;

EMACS Code During Wnich It
Is Not Alright To See Phantom
Logout Notifications

i1/* turn on phantom logout notification %/

icall sw$int(k$on, selection, dummy, ercode);

EMACS Code During Which It
Is Alright To See Phantom
Logout Notifications

i Remember that any combination of interrupts may be selected.

%% PRIME RESTRICTED *%# Page 18

R ”

Samr el

Software Interrupt Control Module Functional Spec. PE~-T-1005, Rev. 2

'7 MORE INFORMATION ON THE SOFTWARE INTERRUPT MECHANISM

'For information on the details of the software interrupt mechanism
lconsult Software Interrupt Mechanism PE-TI-879.

'For information relating to why this new software interrupt control
'module was built consult Software Interrupt Control Module Proposal
| PE-T-1004.

'For information relating to the design details of the software

'interrupt control mechanism consult Software Interrupt Control Hodule
'Design Spec. PE-TI-1006.

%%% PRIME RESTRICTED ¥*# Page 19

	Cover Sheet
	1
	Table of Contents
	2
	Introduction
	Why Do We Need SW$INT
	3
	Module Descriptions
	4
	SW$INT
	5
	6
	6
	SW$MKRCS
	8
	SW$R0OFF
	9
	SW$RAOF
	10
	(Dup)
	10
	SW$ON
	11
	How To Make A Critical Section
	12
	13
	14
	15
	How To Make A Reverse Critical Section
	16
	Enabling/Disabling Selected Software Interrupts
	17
	18
	More Information On the Software Interrupt Mechanism
	19

