
Software Interrupt Control Module Functional Spec. PE-T-100p, Rev. 2

DATE: September 22 , 1933

T O : R a n d D P e r s o n n e l

F R O M : J e r r y K a z i n

SUBJECT: Software Interrupt Control Module Functional Spec.

REFERENCE: PRIMOS Subroutines Guide (BREAKS Function)
Software Interrupt Mechanism

PE-TI-879
Software Interrupt Control Module Proposal

PE-T-1004
Software Interrupt Control Module Design Spec.

PE-TI-1006

KEYWORDS: Software Interrupts, QUIT

ABSTRACT

Prior to Rev. 18, PRIMOS contained only one software interrupt known
as the QUITS condition. This condition may be enabled/disabled by
calling the BREAKS module. At both Rev. 18 and Rev. 19 new software

I interrupts were added to the system. This paper discusses four new
'.modules, SWSINT, SW$MKRCS, SWSROOFF, SWSRAOF, and SW$ON which allow
users to enable/disable these new interrupts. It also discusses when
and how to use the module.

This document is classified PRIME RESTRICTED.
It must not be distributed to non-Prime Personnel
When there is no longer a need for this document,
it should be returned to the Bldg. 10 Information
Center by special delivery inter-office mail - or

destroyed.

'Prime Computer, Inc., 1983
All Rights Reserved

*** PRIME RESTRICTED ***

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

Table of Contents

1 I N T R O D U C T I O N ' . 3

2 W H Y D O W E N E E D S W S I N T 3

3 M O D U L E D E S C R I P T I O N S 4
3 . 1 S W S I N T 5
3 . 2 S W S M K R C S 8
3 . 3 S W S R O O F F 9
3 . 4 S W S R A O F 1 0
3 . 5 S W $ 0 N 1 1

4 H O W T O M A K E A C R I T I C A L S E C T I O N 1 2
4 . 1 I n R i n g 3 1 2

4 . 1 . 1 P L / P 1 2
4 . 1 . 2 F O R T R A N 1 3
4 . 1 . 3 P M A 1 3

4 . 2 I n R i n g 0 1 4
4 . 2 . 1 P r o g r a m m i n g E x a m p l e 1 4

5 H O W T O M A K E A R E V E R S E C R I T I C A L S E C T I O N 1 5
5 . 1 P L / P 1 6
5 . 2 F O R T R A N 1 6
5 . 3 P M A 1 7

6 ENABLING/DISABLING SELECTED SOFTWARE INTERRTUPTS 17
6 . 1 P r o g r a m m i n g E x a m p l e 1 7

7 MORE INFORMATION ON THE SOFTWARE INTERRUPT MECHANISM 19

* * * P R I M E R E S T R I C T E D * * * P a g e

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

1 INTRODUCTION

This document provides a description of the functionality provided by
ithe Software Interrupt Control Module, SW$INT and its streamlined
!friends SWSMKRCS, SWSROOFF, SWSRAOF, and SW$ON. Up till now, a user
was able to turn off only one kind of software interrupt, QUIT. This
was done via the BREAKS module. For more information on this module
consult PRIMOS Subroutines Guide (BREAKS Function).

At Rev. 19.0 six software interrupt types have been defined for
PRIMOS. They are the following:

1) CPU watchdog timer (CPU_TIMER$ condition),

2) Real Time watchdog timer (ALARMS condition),

3) Phantom Logout Notification (PH_LOGO$),

4) Cross Process Signalling (CPS$),

5) Logout (LOGOUTS), and

6) Terminal QUIT (QUITS).

CPS$ is an internal condition and will never be released to the general
p u b l i c .

!At Rev. 19.3 a seventh interrupt type has been added.

! 1) IPC Message Waiting (IPC_MSG_WAITING$)

SWSINT and its associated mechanism allow a user to independently and
selectively enable/disable any or all of these interrupts. SWSMKRCS,
SWSROOFF, SWSRAOF, and SWSON allow a user to enable/disable all of
these interrupts at one time.

2 WHY DO WE NEED SW$INT

The software interrupt mechanism normally enables the receipt of
interrupts in ring 3 and normally disables their receipt in ring 0. In
light of this fact, there are three main reasons why SWSINT has been
created .

1) It often happens that programmers need to create sections of code
that are non-interruptable. These sections of code are known as
cr i t i ca l sec t ions . When a so f tware in te r rup t i s s igna l led , an
asynchronous event occurs. I f these asynchronous events were
allowed to occur, a programmer would not be able to create a
critical section. Since SWSINT and SWSRAOF allow programmer's to
disable all software interrupts, the use of these modules gives the
programmer the needed ability to create a critical section. As ring
0 is normally software interrupt inhibited, this point only relates
to the ring 3 programmer.

*** PRIME RESTRICTED *** Page

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

2) Sometimes it is necessary only to turn off a specific software
interrupt, not all interrupts. For example, a program may need to
impede terminal quits, but yet allow its user to see phantom logout
notification. (It may be spawning phantoms on behalf of its user.)
If only all interrupts could be turned off, it would not be possible
to achieve this state. SW$INT allows a programmer to selectively
enable/disable the various interrupt types.

3) There are pieces of code in ring 0 that need to receive software
i n t e r r u p t s . S i n c e r i n g 0 i s n o r m a l l y d i s a b l e d f o r s o f t w a r e
interrupts, i t must be possib le to enable sof tware in terrupts.
SWSINT and SWSMKRCS allow software interrupts to be taken while in
ring 0. The section of ring 0 code that is allowed to take these
interrupts is called a reverse critical section.

3 MODULE DESCRIPTIONS

The following module descriptions contain references to the variables
selection and value. These variables have a three word data structure
as follows:

del 1 bit_struc,
2 len fixed bin, /* number of bits available */
2 firstl6 bit(l6), /* first set of 16 bits */
2 secondl6 bit(l6); /* second set of 16 bits */

Presently seven interrupts types have been defined. Their positions wit
h in
selection and value are:

t e r m i n a l q u i t - b i t 1
c p u t i m e r - b i t 2
r e a l t i m e t i m e r - b i t 3
l o g o u t - b i t 4
phantom logout notification - bit 5
cross process signalling - bit 6
i p c m e s s a g e w a i t i n g - b i t 7

* * * P R I M E R E S T R I C T E D * * * P a g e

Software interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

Software Interrupt Control Module

SWSINT

May 25, 1982

3-1 SWSINT

! SWSINT !

Subroutine

Name: SWSINT

Purpose:

SWSINT is used to control the enable/disable status of the software
interrupts. It does this by setting/resetting the enable bit(s) of the
software interrupt ring control words located in PUDCOM.

SWSINT is able to set on, set off, or simply read the status of the
interrupt type chosen by its caller. The type is chosen by either
setting a bit(s) on in the input argument, SELECTION, or using one of
the "al l" keys. For read, the current sett ing is returned in the
argument, VALUE.
A user may enable/disable and/or read any interrupt(s) in an outer ring
by including the optional outer ring argument.

During enabling if an interrupt is found pending which is enabled, it
will be handled immediately.

Software interrupts are normally off in ring 0 and normally on in the
outer rings.

The module is much more powerful in ring 0. It can additionally return
the already defered interrupt setting. Additionally, to ease use in
ringO this module has two names, SWSINT and SW$IN. In PL/P one can be
used as the function call and one as the procedure call.

When SWSINT is called to inhibit or enable interrupts with any of the
"all" keys (see below for key definitions), the terminal quit counters
wi l l not be incremented/decremented i f they already indicate the
desired setting. In other words, if SWSINT is called to inhibit all
interrupts and the quit counter is already positive meaning terminal
quits are already inhibited, the counter will not be incremented. This
is analogous for the enable case.

Usage:
From Any Ring: del sw$int entry(fixed bin, 1, 2 fixed bin,

2 bit(l6) , 2 bit(l6),
1 , 2 fi:;ed bin, 2 bit(l6) ,
2 bit(16) , fixed bin [,
fixed bin]) ;

call sw$int(key, selection, value, ercode [,
outer ring]) ;

*** PRIME RESTRICTED *** Page

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

A d d i t i o n a l l y
From Ring 0: del sw$int entry(fixed bin, 1, 2 fixed bin,

2 bitd6) , 2 bitd6) ,
1, 2 fixed bin, 2 bit(l6) ,
2 bit(16) , fixed bin [,
fixed bin])

returns(fixed bin) ;

swi already_deferred = sw$int(key, selection,~ v a l u e , e r c o d e [,
outer ring]) ;

key - input key
valid keys and their values are:

k$read = 1 Read present status
k$on = 2 Turn on interrupt(s)
k$off = 3 Turn off interrupt(s)
k$rdon = 4 Read present status and

turn on interrupt(s)
k$rdof = 5 Read present status and

turn off interrupt(s)
k$rdal = 6 Read present status of all

i n t e r r u p t s
k$alon = 7 Turn on all interrupts
k$alof = 8 Turn off all interrupts
k$raon = 9 Read present status and

turn on all interrupts
k$raof = 10 Read present status and

turn off all interrupts

selection - specific interrupt type chosen

value - when a read is issued and the interrupt type chosen in
selection or by use of an "all" key is found enabled the bit
as defined in selection above is turned on

whenever a read is to be performed the len field of value must
| be initialized to a number >= 7 (number of interrupt types) so

SWSINT knows that the user has presented a buffer large enough
for it to write into

ercode - standard PRIMOS error code
only ones used are:

bad key - unknown key
bad parameter - bad length field in selection

bad optional outer ring
buffer too small - bad length field in value

outer_ring - optional input argument that tells SW$INT to act upon the
ring specified in outer_ring

* * * P R I M E R E S T R I C T E D * * * P a g e 6

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

ipt nas alreadybeen deferred in ring 0
,swi_already_deferred - if = 1 then a software interrupt has alread

*** PRIME RESTRICTED *** P a g e 7

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

I 3.2 SWSMKRCS

j M a k e A R e v e r s e C r i t i c a l S e c t i o n
i _ _ _ — _ — — _ — _ _ — — — — — — — — — — — — — —

I | " s W $ M K R C S { ' • S W $ M K R C S |
i — — — — — — — — — — — —
i — — — — — — — — —

S u b r o u t i n e T U E , 1 3 S E P 1 9 8 3

Name: SWSMKRCS

Purpose:
Allows software interrupts to be seen in ring 0. Callable only in ring
0.

During enabling if an interrupt is found pending which is enabled, it
will be handled immediately.

Usage:
del swSmkrcs entryd, 2 fixed bin, 2 bit(l6), 2 bit(l6))

re tu rns (fixed b in) ;

swi_already_deferred = sw$mkrcs(value);

lvalue - returned indication of inhibited interrupts
| a t t i m e o f c a l l

Iswi already deferred - if = 1 then a software interrupt has already
j ~ ~ ~ ~ b e e n d e f e r r e d i n r i n g 0

* * * P R I M E R E S T R I C T E D * * * P a g e 8

^ n f holtware interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3-3 SWSROOFF

Turns Software Interrupts Off

I SWSROOFF !

Subroutine

Name: SWSROOFF

! SWSROOFF

TUE, 13 SEP 1983

Purpose:

Turns selected software interrupts off. Only callable in ring 0.

Usage:

del sw$r0off entryO, 2 fixed bin, 2 bit06), 2 bit(l6));

ca l l sw$ r0o f f (se l ec t i on) ;

selection - specific interrupt type chosen

*** PRIME RESTRICTED *** P a g e 9

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3.4 SWSRAOF

SWSRAOF

Subroutine

Name: SWSRAOF

Makes A Critical Section

SWSRAOF

TUE, 13 SEP 1983

Purpose:

Turns off all software interrupts. Should only be called from ring 3
as it only turns off interrupts for ring 3-

Usage:

del sw$raof entryO, 2 fixed bin, 2 bit(l6), 2 bit06));

cal l sw$raof(value) ;

[value - returned indication of enabled interrupts
! a t t i m e o f c a l l

*** PRIME RESTRICTED *** Page 10

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3.4 SWSRAOF

Makes A Critical Section

S W S R A O F ! | S W $ R A 0 F

Subroutine

Name: SWSRAOF
TUE, 13 SEP 1983

Purpose:
Turns off all software interrupts. Should only be called from ring 3
as it only turns off interrupts for ring 3.

Usage:

del sw$raof entryO, 2 fixed bin, 2 bit(16), 2 bit(l6));

cal l sw$raof(value) ;

lvalue - returned indication of enabled interrupts
I a t t i m e o f c a l l

* * * P R I M E R E S T R I C T E D * * * p a g e 1 0

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

3.5 SWSON

SWSON

Subroutine

Name: SW$0N

Purpose:

Turns Software Interrupts On

SW$ON

TUE, 13 SEP 1933

Enables the selected software interrupts. Should only be called from
ring 3 as it only turns on interrupts for ring 3-

During enabling if an interrupt is found pending which is enabled, it
will be handled immediately.

Usage:
del sw$on entryO, 2 fixed bin, 2 bit(l6), 2 bit(l6));

ca l l sw$on(select ion) ;

selection - specific interrupt type chosen

*** PRIME RESTRICTED *** Page 1 1

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

4 HOW TO MAKE A CRITICAL SECTION

Critical sections allow a programmer to write non-interruptable code.
Since interrupts are normally enabled in ring 3 and disabled in ring 0,
only ring 3 users normally have to worry about creating crit ical
sections. Unfortunately, on rare occasions it may be necessary to
insure that ring 0 is in a critical section. This may occur because a
prior module in ring 0 has enabled any or all of the software
i n t e r r u p t s .
This sect ion is therefore spl i t into two parts, making a cr i t ical
section in ring3 and making a critical section in ring 0.

4.1 In Ring 3

IGenerically a critical section in ring 3 can be made by:

1) Finding out what interrupts are presently enabled.

2) Turning off the found interrupts.

The critical section is ended by:

1) Turning back on the found interrupts.

Note that this method of creating a critical section leaves the state
of a program's execution environment the same after the crit ical
section as before the critical section.

[These three operations can be achieved in two atomic steps:

I 1) Finding out which interrupts are presently on while turning them
o f f .

i 2) Turning back on the found interrupts.

IThe following is sections describe how to make a critical section in
IPL/P, FORTRAN, and PMA.

14.1.1 PL/P

idol sw$raof entryO, 2 fixed bin, 2 bit(16), 2 bit(l6));
j 1 , 2 fi x e d b i n , 2 b i t (1 6) , 2 b i t (l 6) , fi x e d b i n) ,! 1 v a l u e ,
I 2 l e n fi x e d b i n ,
! 2 fi r s t l 6 b i t (1 6) ,
I 2 s e c o n d l 6 b i t (1 6) ;

;/* ***** BEGIN CRITICAL SECTION ***** */

* * * P R I M E R E S T R I C T E D * * * P a g e 1 2

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

cal l sw$raof(va lue) ;

{User Code}

call sw$on(value);

/* ***** END CRITICAL SECTION ***** */

4.1.2 FORTRAN

INTEGER*2 VALUE(3)

C /* ***** BEGIN CRITICAL SECTION ***** */

CALL SW$RAOF(VALUE)

{User Code}

CALL SWSON(VALUE)

c /* ***** END CRITICAL SECTION ***** */

4.1.3 PMA

DYNM VALUE(3)
* /* ***** BEGIN CRITICAL SECTION ***** */

CALL SWSRAOF
AP VALUE,SL

{User Code}

CALL SWSON
AP VALUE,SL

* /* ***** END CRITICAL SECTION ***** */

* * * P R I M E R E S T R I C T E D * * * P a g e 1 3

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

4.2 In Ring 0

Generically a critical section in ring 0 can be made by:

1) Get and save the present value for al l counted software
i n t e r r u p t s

2) Set the value for all counted interrupts to 0

3) Call SWSINT with the read all off key to get present enabled
state which must be saved

To end the crtical section, do the following:

1) Call SWSINT with the on key and the saved present enable state

2) Restore the saved value for all counted software interrupts

INote that this method of creating a critical section leaves the state
iof a program's execution environment the same after the crit ical
Isection as before the critical section.

!The following section contains a programming example in PL/P of how to
Imake a critical section in ring 0.

4.2.1 Programming Example

del break$ entry (bit(l6), fixed bin),
swSint entry(fixed bin, 1, 2 fixed bin, 2 bit(16),

2 bit(l6), 1, 2 fixed bin, 2 bit(l6),
2 bit(16) , fixed bin),

brk_count fixed bin,1 selection,
2 len fixed bin,
2 firstl6 bit(16) ,
2 second16,

3 nu bitd6) ;
del 1 value like selection,

ercode fixed bin;

brk_set by *0004'b4,
k$raof by 10,
k$off by 3,

/* ***** BEGIN CRITICAL SECTION ***** */

cal l break$(brk_get, brk_count);
call break$(brk_set, 0);
value.len = 32;
call sw$int(k$raof, selection, value, ercode);

* * * P R I M E R E S T R I C T E D * * * p a g e 1 4

Sof tware In ter rupt Contro l Module Funct ional Spec. PE-T-1005, Rev. 2

| { U s e r C o d e }

I c a l l s w $ i n t (k $ o f f , s e l e c t i o n , v a l u e , e r c o d e) ;
I c a l l b r e a k $ (b r k _ s e t , b r k _ c o u n t) ;

>/* ***** END CRITICAL SECTION ***** */

15 HOW TO MAKE A REVERSE CRITICAL SECTION

Sof tware in te r rup ts a re normal ly d isab led in r ing 0 to make kerna l
operat ions normal ly atomic. This a l lows r ing 0 programmers to forget
a b o u t t h e n e e d f o r c r i t i c a l s e c t i o n s , a v e r y u s e f u l c o n v i e n e n c e .
However, sometimes ring 0 code, such as C1IN$, needs to enable software

[in te r rup ts . As was prev ious ly ment ioned, these sec t ions o f code are
I termed reverse cr i t ical sect ions.

Generically a reverse critical section can be made by:

1) Finding out what interrupts are presently disabled.

2) Turning on the found interrupts.

The reverse critical section is ended by:

1) Turning back off the found interrupts.

Note that this method of creat ing a cr i t ical sect ion leaves the state
o f a p r o g r a m ' s e x e c u t i o n e n v i r o n m e n t t h e s a m e a f t e r t h e r e v e r s e
cr i t i ca l sec t ion as be fo re the reverse c r i t i ca l sec t ion .

SThese three operations can be achieved in two atomic steps:

,1) Finding out which interrupts are presently off while turning them
on .

| 2) Turning back off the found interrupts.

One other item needs to be considered in ring 0 when creating a reverse
c r i t i ca l sec t i on . S i nce i n t e r rup t s a re no rma l l y o f f i n r i ng 0 , t he re
exists the possibi l i ty that a software interrupt occured whi le we were
in r ing 0 wi th interrupts disabled. When the system detects such a
situation and finds the interrupts to be enabled in the outer rings, it
d e f e r s t h e i n t e r r u p t u n t i l t h e fi r s t e x i t f r o m r i n g 0 . O n l y o n e
interrupt type may ever be found defered. Therefore, when creating a
r e v e r s e c r i t i c a l s e c t i o n , t h e p r o g r a m m e r m u s t r e a d t h e

JSWI ALREADY DEFERRED status returned. If there already is a deferred
interrupt, the program should return as soon as possible. The return
f r o m r i n g 0 w i l l t h e n c a t c h t h e d e f e r r e d i n t e r r u p t . S i n c e t h e
p r o g r a m m e r w a s t r y i n g t o s e t u p t o s e e i n t e r r u p t s , t h i s i s t h e

* * * P R I M E R E S T R I C T E D * * * P a g e 1 5

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

functionality that the programmer desires.
Two other rules must also be followed by the ring 0 user. When a
deferred interrupt is detected, the initial call into ring 0 is set up
to be retryed. Therefore, anytime a programmer is going to create a
reverse critical section, no static changes can be made to the user
environment at any point before the reverse critical section is made.

Basical ly, the above two paragraphs show that the only t ime a
programmer needs to pay attention to the SWI_ALREADY_DEFERRED status is
when the program is in ring 0 and software interrupts are to be
enabled.

For more information consult Software Interrupt Mechanism PE-TI-879.

The following is sections describe how to make a reverse critical
section in PL/P, FORTRAN, and PMA.

5.1 PL/P

!dcl swSmkrcs entryO, 2 fixed bin, 2 bit(l6), 2 bit06))
! r e t u r n s (fi x e d b i n) ,
! 1 v a l u e ,
! 2 l e n fi x e d b i n ,
! 2 fi r s t 1 6 b i t (1 6) ,
! 2 s e c o n d 1 6 b i t (1 6) ;

;/* ***** BEGIN REVERSE CRITICAL SECTION ***** */

[if sw$mkrcs(value) = 1
! then re turn ;

! { U s e r C o d e }

Icall sw$rOoff(value) ;

j/* ***** END REVERSE CRITICAL SECTION ***** */

I5.2 FORTRAN

I INTEGER*2 VALUE(3)

|C /* ***** BEGIN REVERSE CRITICAL SECTION ***** */

I IF (SW$MKRCS(VALUE) .EQ. 1) RETURN

i { U s e r C o d e }

*** PRIME RESTRICTED ***
Page 16

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

| CALL SW$R00FF(VALUE)

jC /* ***** END REVERSE CRITICAL SECTION ***** */

I 5-3 PMA

| DYNM VALUE(3)

;* /* ***** BEGIN REVERSE CRITICAL SECTION ***** */

i CALL SWSMKRCS
| A P V A L U E , S L
| S 1 A I N T E R R U P T
] S M Z P E N D I N G ?
J P R T N Y E S - R E T U R N

| { U s e r C o d e }

| CALL SWSROOFF
I A P V A L U E , S L
<* /* ***** END REVERSE CRITICAL SECTION ***** */

16 ENABLING/DISABLING SELECTED SOFTWARE INTERRTUPTS

ISWSINT can be used to se lec t ive ly enable or d isab le spec ific
1 interrupts. As ring 3 is most likely to use this feature, an program
Iwhich runs in this ring will be used as an example.

I Only PL/P will be used as the programming example.

|6.1 Programming Example

IA program running in ring 3, such as EMACS, decides that it does not
Iwant the phantom logout notification message to be printed immediately.
I The following code show how EMACS would disable this interrupt.

del sw$int entry(fixed bin, 1, 2 fixed bin, 2 bit(l6), 2 bit(l6),
1, 2 fixed bin, 2 bit(l6), 2 bit(l6), fixed bin),

key fixed bin,
1 s e l e c t i o n , / * s e l e c t e d i n t e r r u p t * /

2 len fixed bin,
2 firstl6 bit(l6) ,
2 secondl6 bit(16) ;

del 1 dummy like selection, /* dummy value arg */
ercode fixed b in; / * s tandard system error code * /

^replace ph_logo_bit by '0800',

* * * P R I M E R E S T R I C T E D * * * P a g e 1 7

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

k$on by 2,
k$off by 3,
max num swis by 7; /* max number software ints. */

EMACS Code During Which It
Is Alright To See Phantom

Logout Not ificat ions

/* turn off phantom logout notification */

selection.len = max_num_swis;
selection.first 16 = ph_logo_bit;
call sw$int(k$off, selection, dummy, ercode);

EMACS Code During Which It
Is Not Alright To See Phantom

Logout Not ificat ions

/* turn on phantom logout notification */

call sw$int(k$on, selection, dummy, ercode);

EMACS Code During Which It
Is Alright To See Phantom

Logout Not ificat ions

Remember that any combination of interrupts may be selected

*** prime RESTRICTED ***
Page

Software Interrupt Control Module Functional Spec. PE-T-1005, Rev. 2

17 MORE INFORMATION ON THE SOFTWARE INTERRUPT MECHANISM

IFor information on the details of the software interrupt mechanism
[consult Software Interrupt Mechanism PE-TI-879.

IFor information relating to why this new software interrupt control
'.module was built consult Software Interrupt Control Module Proposal
IPE-T-1004.

{For in fo rmat ion re la t ing to the des ign de ta i l s o f the so f tware
[interrupt control mechanism consult Software Interrupt Control Module
IDesign Spec. PE-TI-1006.

*** PRIME RESTRICTED *** Page 19

	Cover Sheet
	1
	Table of Contents
	2
	Introduction
	Why Do We Need SW$INT
	3
	Module Descriptions
	4
	SW$INT
	5
	6
	6
	SW$MKRCS
	8
	SW$R0OFF
	9
	SW$RAOF
	10
	(Dup)
	10
	SW$ON
	11
	How To Make A Critical Section
	12
	13
	14
	15
	How To Make A Reverse Critical Section
	16
	Enabling/Disabling Selected Software Interrupts
	17
	18
	More Information On the Software Interrupt Mechanism
	19

